전문적인 섭외&진행 노하우로 다져진 호오컨설팅은 행사 진행에서 가장 중요한
사회자의 섭외를 통해 성공적인 행사가 진행될 수 있도록 도와드립니다.
‘직관’과 ‘경험’으로 성공하는 시대는 끝났다!
국내 최고 데이터 전문가들이 말하는 실전 데이터 분석법!
지난 30여 년간 대한민국 AI·빅데이터 분야를 이끌어온 국내 최고 전문가들이 한자리에 뭉쳐 ‘데이터 활용 입문서’를 출간했다. 금융, 제조, 마케팅, 영업, HR 등 비즈니스 전반에 걸친 빅데이터 최신 경향과 풍부한 사례를 담아, 실제 빅데이터가 어떻게 활용되고 있으며 어떻게 현업의 문제를 해결하고 성과를 내는지 생생하게 보여준다.
‘직관’이나 ‘경험’은 주관적일 뿐 아니라 저마다 해석을 달리할 수밖에 없는 반면, ‘데이터’는 객관적이다. 그렇기 때문에 데이터는 의견과 해석이 넘치는 세상에서 합리적이고 과학적인 의사결정을 할 수 있게 돕는 가장 효과적인 도구다. 이 책은 비전공자도 데이터를 기반으로 합리적인 의사결정을 할 수 있도록, 자신에게 필요한 데이터 분석 방법을 찾고 활용할 수 있는 노하우를 제공한다.
추천사
프롤로그
1부 데이터 문맹 탈출, 반드시 알아야 할 데이터 상식
더 나은 의사결정을 위한 빅데이터
좋은 기획이 빅데이터의 가치를 결정한다
어떻게 빅데이터를 분석할 것인가
비전공자가 데이터 전문가로 성장하는 방법
기획과 분석, 핵심 원리만 이해하면 성공한다
2부 데이터 시각화로 트렌드를 읽어라
복잡한 정보를 시각적으로 탐색하면 생기는 변화
데이터에 숨어 있는 본질을 발견하다
데이터 마이닝과 비즈니스 인텔리전스가 만나면
결국 다양한 데이터 경험이 중요하다
3부 분류와 예측, 미래를 읽는 가장 확실한 방법
인공지능과 머신러닝을 움직이는 기본 원리
데이터 활용은 분류와 예측에서 시작한다
함수를 찾으면 미래가 보인다
무한한 가능성의 인공지능
4부 데이터를 끼리끼리 뭉쳐 보는 군집분석의 힘
데이터의 특징을 파악해야 하는 이유
군집분석, 어디에 어떻게 쓰일 것인가
데이터 간 거리를 읽으면 결과가 명확해진다
중요한 의사결정일수록 반복적으로 분석하라
5부 인공지능, 더 빠르고 능숙하게 이미지를 분석하다
기계가 인간처럼 스스로 학습하고 분석하는 세상
단순한 원리로 극강의 성과를 내는 딥러닝
알파고 이후 인공지능이 만든 놀라운 성과들
앞으로 10년, 빅데이터로 준비하는 미래
부록 빅데이터 직업 제대로 알기
데이터 전문가를 키우는 대학들
Q/A 묻고 답하기
◆책 속으로
데이터의 의미와 데이터를 바라보는 관점, 핵심 분석 방법인 시각화, 예측, 클러스터링, 그리고 이미지와 텍스트 데이터의 분석 방법 등은 전공과 무관하게 누구나 이해하고 활용할 수 있어야 한다. 왜냐하면 빅데이터는 미래가 아니라 현재 우리의 일상에서 일어나는 일이고, 기업과 공공기관에서는 이를 활용해 중요한 의사결정을 하고 있기 때문이다. 무엇보다 이제 빅데이터는 더는 ‘알면 좋은’ 대상이 아닌 ‘모르면 안 되는’ 대상이 되었다.
【프롤로그 : 9~10쪽】
잘 팔리지 않는 전자오븐의 경우, 어떤 의사결정을 통해 판매를 증진시킬 수 있을까? 데이터에서 도출한 인사이트를 갖고 가격을 대폭 낮추거나 친절하게 레시피를 주며 프로모션 활동을 하는 것 중 합리적인 선택하는 일이 곧 의사결정이다. 이를 개인에게 적용할 수도 있겠다. 현실에서 내가 당장 부딪힌 문제를 어떤 행동으로 해결할 수 있을까? 하나의 선명한 문제에 부딪혔을 때 그 의사결정을 선진화하는 것, 조금 더 체계적인 근거를 가지고 현명한 의사결정을 하는 것, 이것이 분석의 궁극적인 목표라고 할 수 있겠다.
【1부 데이터 문맹 탈출, 반드시 알아야 할 데이터 상식 : 47쪽】
데이터 시각화는 데이터 분석 결과를 이해하기 쉽게 시각적으로 표현하는 과정이다. 엑셀, 태블로 등 많은 비즈니스 데이터 시각화 솔루션과 D3.js, 차티드 등 오픈소스 계열의 소프트웨어는 다양한 차팅 방법을 제공해준다. 최근 데이터 시각화 분야에 대한 투자가 크게 증가하고 있으며, 이에 따라 사용자 인터페이스의 편의성이 좋아지고 엔드유저(end user)의 분석기술 수준이 높아지고 있다.
【2부 데이터 시각화로 트렌드를 읽어라 : 71~72쪽】
현재 우리 사회의 미래를 이끄는 인공지능과 머신러닝을 이해하기 위해 가장 기본이 되는 것은 ‘분류’와 ‘예측’이다. 데이터 활용 공부는 이로부터 시작해야 한다. 인공지능과 머신러닝은 인류 몸속 깊숙이 잠재해 있는 ‘호기심’이라는 DNA가 사라지지 않는 한 끊임없이 발전할 것이다. 이를 두려워하기보다는 인간이기 때문에 가지게 되는 부족함과 한계를 극복할 수 있는 수단으로 즐겁게 사용되어야 할 것이다.
【3부 분류와 예측, 미래를 읽는 가장 확실한 방법 : 116쪽】
군집분석은 금융 시장에도 적용되어 균형 포트폴리오 작성에 도움을 준다. 포트폴리오 작성에서 데이터는 개체가 기업이고, 특징은 주가, 주식 거래량, 매출액 등이 될 수 있다. 특징이 비슷한 기업끼리 묶어보면, 그 특징에 따라 우량기업과 고평가된 기업, 그리고 저평가된 기업 등으로 세분화할 수 있다. 일반적으로 주식 투자에서는 투자효율을 높이기 위해 우량기업에만 투자하지 않고, 다양한 기업에 대해 일정한 비율로 투자함으로써 투자의 위험을 분산한다. 이러한 전략을 세우는 데 군집분석이 활용될 수 있다.
【4부 데이터를 끼리끼리 뭉쳐 보는 군집분석의 힘 : 156쪽】
빅데이터에 내재되어 있는 가치를 창출하기 위해서는 수집된 데이터가 분석의 대상인 동시에 분석 및 예측을 위한 모델링의 재료임을 유의해야 한다. 널리 사용되고 있는 기계학습 방법들은 모델을 구축하기 위해 레이블이 기록된 대용량의 데이터가 필요하므로 사전에 이에 대한 세심한 준비를 해두자. 또한 수집된 데이터와 분석 도구만으로는 유용한 가치를 창출할 수 없기 때문에 무엇을 알아내려고 하는지 분석의 목적을 명확히 해야 한다. 이때 문제에 대한 직관과 창의적인 해석능력이 필요하다. 대용량의 데이터를 처리할 수 있는 딥러닝과 같은 획기적인 분석 방법의 등장과 함께, GPU나 클라우드 컴퓨팅과 같은 저가의 고성능 컴퓨팅 자원이 널리 보급되었다. 따라서 새로운 차원의 분석 결과를 얻는 일이 손쉽게 가능해진 것이다.
【5부 인공지능, 더 빠르고 능숙하게 이미지를 분석하다 : 185~186쪽】
우리가 접하는 데이터는 날이 갈수록 기하급수적으로 증가하고 있다. 그런데 데이터의 증가를 좀 더 심도 있게 살펴보면 데이터 증가의 대부분인 80% 이상의 비중을 차지하는 것이 바로 텍스트 데이터임을 파악할 수 있다. 물론 전반적인 데이터의 양이 증가하고 있는 것도 사실이지만 세부적으로 보았을 때, 데이터 양적 성장의 핵심 요인은 텍스트 데이터이다. 이는 우리가 왜 텍스트 데이터 분석에 집중해야 하는지를 자명하게 드러내주는 객관적인 증거가 된다.
【6부 비즈니스 성패를 가르는 텍스트 데이터에 주목하라 : 214~215쪽】
4차산업( 4차산업, 트렌드, 디지털기술, 미래, IT, 빅데이터, 미래기술, 사물인터넷, 사물통신, IT트렌드, 미래사회 )
현재 진행률0%
평균적으로 전문강사·MC님 같은 경우는 150만원 이하,
인지도가 높은 강사 ·MC님은 그 이상을
체크해주셔야 합니다.